Why are learned indexes so effective?

Paolo Ferragina¹

Fabrizio Lillo²

Giorgio Vinciguerra¹

A classical problem in computer science

- Given a set of n sorted input keys (e.g. integers)
- Implement membership and predecessor queries
- Range queries in databases, conjunctive queries in search engines, IP lookup in routers...

Indexes

Input data as pairs (key, position)

Input data as pairs (key, position)

Learned indexes

e.g. ε is of the order of 100–1000

The knowledge gap in learned indexes

Practice

Same query time of traditional tree-based indexes

Theory

Same asymptotic query time of traditional tree-based indexes

Space improvements of orders of magnitude, from GBs to few MBs

Same asymptotic space occupancy of traditional tree-based indexes

PGM-index: An optimal learned index

- 1. Fix a max error ε , e.g. so that keys in $[pos \varepsilon, pos + \varepsilon]$ fit a cache-line
- 2. Find the smallest Piecewise Linear ε -Approximation (PLA)
- 3. Store triples (first key, slope, intercept) for each segment

What is the space of learned indexes?

- Space occupancy ∝ Number segments
- The number of segments depends on
 - The size of the input dataset
 - How the points (key, pos) map to the plane
 - The value ε , i.e. how much the approximation is precise

Model and assumptions

- Consider gaps $g_i = k_{i+1} k_i$ between consecutive input keys
- Model the gaps as positive iid rvs that follow a distribution with finite mean μ and variance σ^2

The main result

Theorem. If ε is sufficiently larger than σ/μ , the expected number of keys covered by a segment with maximum error ε is

$$K = \frac{\mu^2}{\sigma^2} \varepsilon^2$$

and the number of segments on a dataset of size n is

 $\frac{n}{K}$

with high probability.

The main consequence

The PGM-index achieves the same asymptotic query performance of a traditional ε -way tree-based index while improving its space from $\Theta(n/\varepsilon)$ to $O(n/\varepsilon^2)$

Learned indexes are provably better than traditional indexes

(note that ε is of the order of 100–1000)

Sketch of the proof

- 1. Consider a segment on the stream of random gaps and the two parallel lines at distance ε
- 2. How many steps before a new segment is needed?

Sketch of the proof (2)

- 3. A discrete-time random walk, iid increments with mean μ
- 4. Compute the expectation of $i^* = \min\{i \in \mathbb{N} \mid (k_i, i) \text{ is outside the red strip}\}$ i.e. the Mean Exit Time (MET) of the random walk
- 5. Show that the slope $m=1/\mu$ maximises $E[i^*]$, giving $E[i^*]=(\mu^2/\sigma^2)$ ε^2

Simulations

- 1. Generate 10⁷ random streams of gaps according to several probability distributions
- 2. Compute and average
 - I. The length of a segment found by the algorithm that computes the smallest PLA, adopted in the PGM-index
 - II. The exit time of the random walk

Simulations of $(\mu^2/\sigma^2)\varepsilon^2$

OPT = Average segment length in a PGM-index MET = Mean exit time of the random walk

Stress test of " ε sufficiently larger than σ/μ "

Conclusions

- No theoretical grounds for the efficiency of learned indexes was known
- We have shown that on data with iid gaps, the mean segment length is $\Theta(\varepsilon^2)$
- The PGM-index takes $O(n/\varepsilon^2)$ space w.h.p., a quadratic improvement in ε over traditional indexes (ε is usually of the order of 100–1000)
- Open problems:
 - 1. Do the results still hold without the iid assumption on the gaps?
 - 2. Is the segment found by the optimal algorithm adopted in the PGM-index a constant factor longer than the one found by the random walker?

