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A classical problem in computer science

 Given a set of n sorted input keys (e.g. integers)

* Implement membership and predecessor queries

* Range queries in databases, conjunctive queries in search
engines, |P lookup in routers...
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Input data as pairs (key, position)
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Input data as pairs (key, position)
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Learned indexes
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e.g. € is of the order of 100-1000




The knowledge gap in learned indexes

Practice Theory
Same query time of vs Same asymptotic query
traditional tree-based ——=  time of traditional
indexes tree-based indexes
Space improvements of
orders of magnitude,

e Same asymptotic space
from GBs to few MBs

occupancy of traditional
tree-based indexes
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[Ferragina and Vinciguerra, PVLDB 2020]

PGM-index: An optimal learned index

1. Fix a max error ¢, e.g. so that keys in fit a cache-line
2. Find the smallest Piecewise Linear s-Approximation (PLA)
3. Store triples (first key, slope, intercept) for each segment

positions

https://pgm.di.unipi.it




What is the space of learned indexes?

« Space occupancy « Number segments
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number of segments depends on
he size of the input dataset
ow the points (key, pos) map to the plane

he value ¢, i.e. how much the approximation is precise

g Ke
/

'

positions
positions
positions

e

keys keys keys




Model and assumptions

« Consider gaps g; = k;,, — k; between consecutive input keys

* Model the gaps as positive iid rvs that follow a distribution with
finite mean u and variance ¢*
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The main result

Theorem. If € is sufficiently larger than o /u, the expected number

of keys covered by a segment with maximum error € is
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and the number of segments on a dataset of size n is

n
K
with high probability.




The main consequence

The PGM-index achieves the same asymptotic query
performance of a traditional e-way tree-based index
while improving its space from @(n/g) to 0(n/&?)




Sketch of the proof

1. Consider a on the stream of random gaps and the
at distance ¢

2. How many steps before a new segment is needed?
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Sketch of the proof (2)

3. Adiscrete-time random walk, iid increments with mean u

4. Compute the expectation of
i* = min{i € N | (k;,1) is outside the red strip}
i.e. the Mean Exit Time (MET) of the random walk

5. Show that the slope m = 1/u maximises E[i*], giving E[i*] = (u?/c?) &2
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Simulations

1. Generate 10’ random streams of gaps according to
several probability distributions

2. Compute and average

|.  The length of a segment found by the algorithm that
computes the smallest PLA, adopted in the PGM-index

Il. The exit time of the random walk




Simulations of (u?/o?)e? & i

Pareto k =3, =3 Lognormal p=1,0 = 0.5
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More distributions in the paper



Stress test of “s sufficiently larger than o /u”
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Conclusions

* No theoretical grounds for the efficiency of learned indexes was known
« We have shown that on data with iid gaps, the mean segment length is 0(&?)

» The PGM-index takes 0(n /%) space w.h.p., a quadratic improvement in ¢
over traditional indexes (¢ is usually of the order of 100-1000)

* Open problems:
1. Do the results still hold without the iid assumption on the gaps?

2. |s the segment found by the optimal algorithm adopted in the PGM-index a
constant factor longer than the one found by the random walker?




