
The PGM-index: a fully-dynamic
compressed learned index with
provable worst-case bounds

Paolo
Ferragina

Giorgio
Vinciguerra

pgm.di.unipi.it

The predecessor search problem

• Given 𝑛 sorted input keys (e.g. integers), implement
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑥 = “largest key ≤ 𝑥”
• Range queries and joins in DBs, conjunctive queries in search

engines, IP routing…
• Lookups alone are much easier; just use Cuckoo hashing for

lookups at most 2 memory accesses (without sorting data!)

2

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 36 = 36

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 50 = 48

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

pgm.di.unipi.it

Indexes

3

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 11

𝑘𝑒𝑦 = 36

B-tree

(values associated to keys are not shown)

pgm.di.unipi.it

Input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

4

po
sit

io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

Ao et al. [VLDB 2011]

pgm.di.unipi.it

Input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

5

po
sit

io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛2 3 4

2 11 13 15

1

2

3

4

Ao et al. [VLDB 2011]

pgm.di.unipi.it

Learned indexes

6

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

Black-box trained on a dataset of pairs (key, pos)
𝒟 = { 2,1 , 11,2 , … , (95, 𝑛)}

Binary search in
[𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑒𝑟𝑟𝑜𝑟]

(approximate)

po
sit
io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

Ao et al. [VLDB 2011], Kraska et al. [SIGMOD 2018]

pgm.di.unipi.it

The problem with learned indexes

Fast query time and excellent
space usage in practice,

but no worst-case guarantees

7

Very slow
to train

Vulnerable to
adversarial inputs

and queries

Must be tuned for
each new dataset

Too much I/O when
data is on disk

Unscalable
to big data

Unpredictable
latency

Blind to the
query distribution

pgm.di.unipi.it

Introducing the PGM-index

Fast query time and excellent
space usage in practice,

and guaranteed worst-case bounds

8

Predictable
latency

Resistant to
adversarial inputs

and queries

Scalable
to big data

Very fast
to build

Constant I/O when
data is on disk

No additional
tuning needed

Query distribution
aware

pgm.di.unipi.it

Ingredients of the PGM-index

Fixed model “error” ε
Control the size of the search range

(like the page size in a B-tree)

Opt. piecewise linear model
Fast to construct, best space usage

for linear learned indexes

Recursive design
Adapt to the memory hierarchy

and enable query-time guarantees

9

pgm.di.unipi.it

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

10
2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

pgm.di.unipi.it

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

11

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

1 𝑛

pgm.di.unipi.it

Partial memory layout of the PGM-index

Segments (2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

12

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

Each segment indexes a variable and potentially large sequence of keys
while guaranteeing a search range size of 2𝜀 + 1

Binary search in
[𝑝𝑜𝑠 − 𝜀, 𝑝𝑜𝑠 + 𝜀]

pgm.di.unipi.it

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

13

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

1 𝑛

pgm.di.unipi.it

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

14

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

2 23 31 48 71 88 122 145

pgm.di.unipi.it

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

15

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦 Step 4. Repeat recursively

2 23 31 48 71 88 122 145

pgm.di.unipi.it

Memory layout of the PGM-index

(2, sl, ic) (31, sl, ic) (88, sl, ic) (145, sl, ic)

(2, sl, ic)

16

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

It can also be constructed
in a single pass

Very fast construction, a couple
of seconds for 1 billion keys

pgm.di.unipi.it

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

(2, sl, ic) (31, sl, ic) (88, sl, ic) (145, sl, ic)

(2, sl, ic)

Predecessor search with 𝜀 = 1

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 57 ?

17

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

𝐵 = disk page-size

Set 𝜀 = Θ 𝐵 for
queries in 𝑂(log! 𝑛) I/Os

𝑂(𝑛/𝜀) space

The PGM-index is never
worse in time and space

than a B-tree

2𝜀 + 1

2𝜀 + 1

2𝜀 + 1

Experiments

pgm.di.unipi.it

Experiments

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

Fastest CSS-tree
128-byte pages

≈350 MB

Matched by PGM with
2ε set to 256
≈4 MB (−83×)

19

Page size

2ε

Avg search range

pgm.di.unipi.it

Experiments on updates

20Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

pgm.di.unipi.it

Experiments on updates

21

3891×

2051×

1140×

611×

B+-tree page size Index size

128-byte 5.65 GB
256-byte 2.98 GB
512-byte 1.66 GB
1024-byte 0.89 GB

Dynamic PGM-index: 1.45 MB

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

pgm.di.unipi.it

Why the PGM is so effective?

A B-tree node

(𝑘, 𝑠𝑙, 𝑖𝑐)𝑘! 𝑘" … 𝑘#

In one I/O and 𝑂 log" 𝐵 steps the
search range is reduced by 1/𝐵

…

w.h.p. 1/𝐵F

Page size 𝐵 2𝜀 = 𝐵

A PGM-index node

Here the search range is reduced
by at least 1/𝐵

Ferragina et al. [ICML 2020]
22

pgm.di.unipi.it

New experiments with tuned Linear RMI
• 8-byte keys, 8-byte payload
• Tuned Linear RMI and PGM have the same size
• 10M predecessor searches, uniform query workload

New tuned Linear RMI implementation and datasets from Marcus et al., 2020 [arXiv:2006.12804]

PGM improved the empirical
performance of a tuned Linear RMI

Each PGM took about 2 seconds to construct
RMI took 30× more!

23

They tested positive lookups. Here we test predecessor queries

pgm.di.unipi.it

New experiments with tuned Hybrid RMI

24

• 8-byte keys, 8-byte payload
• RMI with non-linear models, tuned via grid search
• 10M predecessor searches, uniform query workload

New tuned Hybrid RMI implementation and datasets from Marcus et al., 2020 [arXiv:2006.12804]

Each PGM took about 2 seconds to construct
Hybrid RMI took 40× (90× with tuning) more!

Avg search range 28

Max search range 28

Avg 215

Max 229

pgm.di.unipi.it

New experiments

25

• 8-byte keys, 8-byte payload
• RMI with non-linear models, tuned via grid search
• 10M predecessor searches

New tuned Hybrid RMI implementation and datasets from Marcus et al., 2020 [arXiv:2006.12804]

Adversarial
query workload

About adversarial data inputs, see Kornaropoulos et al., 2020 [arXiv:2008.00297]

pgm.di.unipi.it

More results in the paper

26

Index compression
Reduce the space of the index by a
further 52% via the compression of

slopes and intercepts

Query-distribution aware
Minimise average query time wrt

a given query workload

Multicriteria tuner
Minimise query time under a

given space constraint and vice versa
in a few dozens of seconds

