
The PGM-index: a fully-dynamic 
compressed learned index with 
provable worst-case bounds

Paolo
Ferragina

Giorgio
Vinciguerra



pgm.di.unipi.it

The predecessor search problem

• Given 𝑛 sorted input keys (e.g. integers), implement 
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑥 = “largest key ≤ 𝑥”
• Range queries and joins in DBs, conjunctive queries in search 

engines, IP routing…
• Lookups alone are much easier; just use Cuckoo hashing for 

lookups at most 2 memory accesses (without sorting data!)
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Indexes
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2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 11

𝑘𝑒𝑦 = 36

B-tree

(values associated to keys are not shown)
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Input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
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Ao et al. [VLDB 2011]
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Input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
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Learned indexes
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𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

Black-box trained on a dataset of pairs (key, pos) 
𝒟 = { 2,1 , 11,2 , … , (95, 𝑛)}

Binary search in
[𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑒𝑟𝑟𝑜𝑟]

(approximate)
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Ao et al. [VLDB 2011], Kraska et al. [SIGMOD 2018]
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The problem with learned indexes

Fast query time and excellent 
space usage in practice,

but no worst-case guarantees
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Very slow
to train

Vulnerable to
adversarial inputs

and queries

Must be tuned for
each new dataset

Too much I/O when
data is on disk

Unscalable
to big data

Unpredictable
latency

Blind to the
query distribution
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Introducing the PGM-index

Fast query time and excellent 
space usage in practice,

and guaranteed worst-case bounds
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Predictable
latency

Resistant to 
adversarial inputs

and queries

Scalable
to big data

Very fast
to build

Constant I/O when
data is on disk

No additional
tuning needed

Query distribution
aware
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Ingredients of the PGM-index

Fixed model “error” ε
Control the size of the search range

(like the page size in a B-tree)

Opt. piecewise linear model
Fast to construct, best space usage

for linear learned indexes

Recursive design
Adapt to the memory hierarchy

and enable query-time guarantees

9
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PGM-index construction

Step 1. Compute the 
optimal piecewise linear 

𝜀-approximation
in Ο(𝑛) time 
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the 
optimal piecewise linear 

𝜀-approximation
in Ο(𝑛) time 
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Step 2. Store the 
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

1 𝑛
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Partial memory layout of the PGM-index

Segments (2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

Each segment indexes a variable and potentially large sequence of keys
while guaranteeing a search range size of 2𝜀 + 1

Binary search in
[𝑝𝑜𝑠 − 𝜀, 𝑝𝑜𝑠 + 𝜀]
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PGM-index construction

Step 1. Compute the 
optimal piecewise linear 

𝜀-approximation
in Ο(𝑛) time 
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Step 2. Store the 
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

1 𝑛
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PGM-index construction

Step 1. Compute the 
optimal piecewise linear 

𝜀-approximation
in Ο(𝑛) time 
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Step 2. Store the 
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

2 23 31 48 71 88 122 145
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PGM-index construction

Step 1. Compute the 
optimal piecewise linear 

𝜀-approximation
in Ο(𝑛) time 
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Step 2. Store the 
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦 Step 4. Repeat recursively

2 23 31 48 71 88 122 145



pgm.di.unipi.it

Memory layout of the PGM-index

(2, sl, ic) (31, sl, ic) (88, sl, ic) (145, sl, ic)

(2, sl, ic)
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(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)
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1 𝑛

It can also be constructed
in a single pass

Very fast construction, a couple
of seconds for 1 billion keys
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(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

(2, sl, ic) (31, sl, ic) (88, sl, ic) (145, sl, ic)

(2, sl, ic)

Predecessor search with 𝜀 = 1

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 57 ?
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

𝐵 = disk page-size

Set 𝜀 = Θ 𝐵 for
queries in 𝑂(log! 𝑛) I/Os

𝑂(𝑛/𝜀) space

The PGM-index is never
worse in time and space 

than a B-tree

2𝜀 + 1

2𝜀 + 1

2𝜀 + 1
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Experiments

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

Fastest CSS-tree
128-byte pages 

≈350 MB

Matched by PGM with
2ε set to 256
≈4 MB (−83×)

19

Page size

2ε

Avg search range
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Experiments on updates

20Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory
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Experiments on updates
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3891×

2051×

1140×

611×

B+-tree page size Index size

128-byte 5.65 GB 
256-byte 2.98 GB 
512-byte 1.66 GB 
1024-byte 0.89 GB 

Dynamic PGM-index:  1.45 MB

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory
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Why the PGM is so effective?

A B-tree node

(𝑘, 𝑠𝑙, 𝑖𝑐)𝑘! 𝑘" … 𝑘#

In one I/O and 𝑂 log" 𝐵 steps the
search range is reduced by 1/𝐵

… 

w.h.p.   1/𝐵F

Page size 𝐵 2𝜀 = 𝐵

A PGM-index node

Here the search range is reduced
by at least 1/𝐵

Ferragina et al. [ICML 2020]
22
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New experiments with tuned Linear RMI
• 8-byte keys, 8-byte payload
• Tuned Linear RMI and PGM have the same size
• 10M predecessor searches, uniform query workload

New tuned Linear RMI implementation and datasets from Marcus et al., 2020 [arXiv:2006.12804]

PGM improved the empirical
performance of a tuned Linear RMI

Each PGM took about 2 seconds to construct
RMI took 30× more!

23

They tested positive lookups. Here we test predecessor queries
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New experiments with tuned Hybrid RMI
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• 8-byte keys, 8-byte payload
• RMI with non-linear models, tuned via grid search 
• 10M predecessor searches, uniform query workload

New tuned Hybrid RMI implementation and datasets from Marcus et al., 2020 [arXiv:2006.12804]

Each PGM took about 2 seconds to construct
Hybrid RMI took 40× (90× with tuning) more!

Avg search range  28

Max search range 28

Avg 215

Max 229
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New experiments
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• 8-byte keys, 8-byte payload
• RMI with non-linear models, tuned via grid search
• 10M predecessor searches 

New tuned Hybrid RMI implementation and datasets from Marcus et al., 2020 [arXiv:2006.12804]

Adversarial
query workload

About adversarial data inputs, see Kornaropoulos et al., 2020 [arXiv:2008.00297]
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More results in the paper
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Index compression
Reduce the space of the index by a 
further 52% via the compression of 

slopes and intercepts

Query-distribution aware
Minimise average query time wrt

a given query workload

Multicriteria tuner
Minimise query time under a

given space constraint and vice versa 
in a few dozens of seconds




